
CIRCULATION COPY
SUBJECT TO RECALL

IN Two WEEKS UCRL-84095
PREPRINT

COMPARING THE FLOATING POINT SYSTEMS, INC. AP-190L
TO REPRESENTATIVE SCIENTIFIC COMPUTERS:

SOME BENCHMARX RESULTS

Thomas A. Brengle and Neil Maron

This paper was prepared for presentation at the
1980 FOURTH ANNUAL FPS USER’S CONFERENCE

San Francisco, CA.
April 28, 1980

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

COMPARING THE FLOATING POINT SYSTEMS, INC. AP-190L

TO REPRES~TATIVE SCIENTIFIC COMPUTERS:
SOME BENCHMARK RESULTS*

Thomas A. Brengle and Neil Maron
Lawrence Livermore Laboratory, University of California,

Livermore, California 94550

ABSTRACT

In this paper we present the results of comparative timing tests made by

ruining a typical FORTRAN physics simulation code on the following machines:

1. DEC PDP-10 with KI processor.

2. DEC PDP-10, KI processor, and FPS AP-190L.

3. CDC 7600.

4. CRAY- 1.

Factors, such as DMA overhead, code size for the AP-190L, and the

relative utilization of floating point functional units for the different

machines, are discussed.

INTRODUCTION

Researchers in the Magnetic Fusion Energy Program at the Lawrence

Livermore Laboratory regularly use FORTRAN codes of all sizes to help provide

solutions to many types of engineering and physics problems. Even though the

6 *work performed under the auspices of the U. S. Department of Energy by the

Lawrence Livermore Laboratory under contract number W-7405-ENG-48.

-2-

computational resources available include a Digital Equipment PDP-10 with KI

processor, a Control Data 7600, and a GRAY-1, it is often the case that the

elapsed time between the start of a code and the output of the results at

investigator’s terminal is quite long. This delay is due to many factors; not

the least being that these machines operate in a time-sharing environment.

Many codes are too large to be run on any machine but a CDC 7600 or

GRAY-1. However, there are several codes, although not necessarily large,

that still require a great deal of computational power. In an effort to

reduce the turnaround time of these codes, we connected a Floating Point

Systems AP-190L to act as a slave to our DEC PDP-10. It was installed in June

1978 with the complete software package as available at that time.

Timing tests verified that the AP-190L hardware was indeed fast.

However, without a FORTRAN cross-compiler for the AP-190L, conversion of

existing codes would be slow and arduous. In 1979, the installation of

software release 79.1, which included AP FORTRAN,l promised to change that

situation.

THE BENCHMARK

In order to make some comparative tests, we decided to use, as a

benchmark, a code which had been developed for use on the PDP-10 and which had

reached a plateau in its development effort. This code, called MAGIC2 by its

2authors, is a one-dimensional cylindrically-symmetric quasi-neutral

magneto-inductive particle code, with electromagnetic fields varying only as a

function of radius. The code includes only radius, radial velocity, azimuthal

velocity, and azimuthal canonical momentum as degrees of freedom for the

-3-

particles. While it is not important to this discussion that the physics of

the simulation be understood, a simplified verbal flow chart of this code is

as follows:

1. Read in parameters and initialize output files.

2. Enter the simulation particles and their physical characteristics.

3. Accumulate the current due to the initial velocities of the

particles.

4. Repeat the following loop several times:

a. Solve for new electric and magnetic fields as induced by

particle currents.

b. Move each particle an incremental amount according to

the new fields, and accumulate the new currents due to

their velocities. Also, provide for the particles

which are moved out of the system.

c. Occasionally sample the physical quantities of interest

in the system, for instance: local field values , particle

velocities, etc.

d. Go back to (a).

5. When the loop is finished, perform some diagnostics on the

system, such as determination of local particle densities, energy

densities, etc.

6. If enough simulation time has not elapsed, go back and repeat

step (4).

7. Otherwise, do the historical summaries of sampled information and

terminate the run.

-4-

The majority of the computation was within step (4). Moving of the

particles in step (4b) actually required 70 to 90 percent of the looptime.

*

PROCEDURE

The comparative test procedure was as follows:

1. Modify the source, as necessary, to allow error-free compilation

on the given machine.

2. Compile and load Ehe code.

3. Execute code for a typical problem.

While step (3) of the test procedure gave a measure of the hardware

speed, it was felt that there should also be a comparison of the time required

to set up the executable code, as this could be important when code

development or debugging might be in progress.

COMPARISON OF SETUP TIMES

In each case the conversion of the source from the PDP-10 to the CDC

7600 and CRAY-1 required about the same amount of time. Approximately four

hours of work was needed to make the source compatible with the two resident

FORTRAN compilers: CHAT on the CDC 7600 and CFT on the CRAY-1. This included

the time required to make several runs of the compilers in order to deal with

@ the errors arising from slight compiler differences. The run time to do a

compile and load was about 45 seconds on the CDC 7600 and about 2 seconds on

&
the CRAY-1.

-5-

However, the conversion to the AP required more than 2 days, due mainly

to two factors. The first was that AP FORTRAN

host FORTRAN and ran on the host machine. They
,-

to do a compile and load was about 1 hour. The

●
small size of the program memory in the AP-190L.

3and APLOAD wsre written in

were very slow. The run time

second was due to the relative

When compiling and loading

code for the AP-190L, it was difficult to know what the final sizes of the

modules would be. Although modules that were too large could be broken up

into two or more overlays, it was difficult to determine a convenient size

until several passes through the compile and load procedure had been made.

When overlays were introduced, data memory management became

Since overlays occupy twice as much data memory as program memory,

of data memory available to the code for data storage was reduced

a problem.

the amount

significantly. In the final configuration of the AP-190L version of the code,

the major loop was the only piece of code running in the AP-190L. The rest of

the code was not repetitive and was primarily input/output operations which

the AP-190L FORTRAN does not support, and which the AP-190L was not able to

initiate in our system’s configuration. Within the loop, each step was

assigned its own overlay, resulting in

program memory, and three overlays.

It should be noted at this point

the structure of the benchmark program

a driver which was always resident in

that vectorization was difficult within

and could not be done at all by an

automatically vectorizing compiler like CFT on CRAY-1.

a

a

A TYPICAL PROBLEM

The two benchmark code parameters, which primarily determined the length

of time that the problem required to be completed, were: the number of

simulation particles used

code was allowed to run.

parameter was increased.
-1

simulation particles, and

9 knew from past experience

-6-

and the number of simulation time steps that the

The run time required increased linearly as either

As a representative case, we chose to use 2000

to let the simulation run for 1024 time steps. We

that this was a typical setup, and was too long to

attempt to run on the PDP-10 by itself.

We also knew from past experience that we would have to consider the

overhead incurred by the APEX calls to the PDP-10 operating system, and the

overhead due to the DMA transfers of data to and from the AP-190L. This

overhead was minimized by allowing the simulation to run 128 time steps for

each AP-190L run call. This permitted the AP-190L to run for several seconds

each time the loop was executed.

RESULTS

The results of the test runs are tabulated in Table I.

Table I. Benchmark Results (in seconds)

DEC F~c) CDC
PDP- 10 AP- 19OL 7600

MIPSa) 1 18 36
Theoretical MFLOPSb) 0.25 12 54-56
Elapsed time 5640 564 375

- CPU 2559 276 99
MFLOPS 0.14 1.3 3.5
Realized MFLOPS/Theoretical MFLOPS 0.56 0.11 0.06

& Megabucks/Realized MFLOPS 3.6 0.08 1.4

CRAY- 1

80
160-240
271
50

7.0
0.04
1.1

NOTES:
a. MIPS : Million instructions executed per second.
b. MFLOPS: Million floating-point operations per second.

c. AP109L CPU time was determined by counting cycles.

- i’-

SOME OBSERVATIONS

3

From the table, \t can be seen that the AP-190L was

o turnaround (elapsed) time by a factor of 10 over what was

able to improve the

possible with the

PDP-10 by itself. In addition to this, we observed that the overhead incurred

by the host was less than 5 percent, which we felt to be an acceptable

figure. The turnaround time was almost within a factor of 2 of that for the

CRAY-1, which we also felt was very good. Of course, the CRAY-1 was operating

in a time-sharing situation, so this implies more that the CRAY-1 was heavily

loaded than it does that the AP-190L has half the computational power of a

CRAY-1 ● This can be seen by looking at the CPU time which indicates a ratio

of close to 5:1.

Using the ratio of realized MFLOPS to theoretical MFLOPS as a measure of

the floating point functional unit utilization, we see that relatively little

use of the functional units was made, and that neither more functional units

nor faster ones could be expected to improve the performance of this type of

code. This was largely due to the very scalar nature of the code.

The ratios of megabucks to realized MFLOPS clearly shows that if the

AP-190L was not the fastest benchmark routine run, it certainly was the most

cost effective.

a CONCLUSIONS

&

Several conclusions can be reached as a result of these comparative

timing tests. .

-8-

First, while the AP-190L hardware is very fast, the AP-190L code

development software is not. This means that the AP-190L will prove to be a

cost effective resource, if and only if, it is primarily used in a production

environment where

Second, the

making use of the

code modifications are kept to a minimum.

user must constantly be aware of the host’s overhead when

AP-190L. Calls to the host operating system must be

minimized, and lllAtransfers must be minimized as often as possible.

Third, the run time in the AP-190L should be maximized so the overhead

becomes comparatively small.

Fourth, the AP-190L is,capable of efficiently ruining only relatively

small programs, even with the use of overlays. Overlays use twice

data memory as program memory and this tends to use up data memory

overlays are introduced.

And lastly, if all of the above are taken into consideration

as much

quickly as

for a

particular problem program, it is quite possible for the AP-190L to be a

highly acceptable substitute for one of the much larger machines.

-9-

PREFERENCES

1. Array Processor Fortran Reference Manual, Floating Point Systems, Inc. ,

Publication No. FPS 860-7408-000, November 1978.

2. T. A. Brengle,

Particle Code,

1978.

B. I. Cohen, MAGIC: A One-Dimensional Magneto-Inductive

University of California UCID-17795, Rev. 1, July 18,

3. APLOAD Reference Manual, Floating Point Systems, Inc., Publication No.

FPS 860-7410-000, January 1979.

4. Neil Maron and George G. Sutherland, AP190-L and pDp-KIIO: A

Hardware/Software Measurement Report, University of California

UCRL-82652, May 25, 1979 (contained in 79 UG 3/FPS, “Record of 1979

User’s Group Meeting”).

NOTICE

ThkreportwaspreparedasanaccountofworksponsoredbytheUnited
StatesGovernment.Neitherthe UrdtedStates nor the United States
Department of Energy, nor any of their emploYees~ nor anY of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness or usefulness of any information, apparatus,
product orprocessdisclowd, or represents that its use would not infringe
privately-owned rights.

Reference to a company or product name does not imply approval or
recommendation of the product by the University of California orthe U.S.
Department of Energy to the exclusion of others that may be suitable.

i,

